CSR_SymmMatMult.h File Reference


Detailed Description

Prototypes for subroutines that compute variations on $y \leftarrow y + \alpha \cdot op(A) \cdot x$, where $A$ is symmetric (i.e., $A = A^T$) and $op(A) = A$.

This file automatically generated by ./gen_csr_symm.sh on Fri Feb 25 13:16:17 PST 2005.

Go to the source code of this file.

Defines

#define INC_CSR_SymmMatMult
 src/CSR/SymmMatMult/CSR_SymmMatMult included.
#define CSR_SymmMatMult_v1_a1_b1_xs1_ys1   MANGLE_(CSR_SymmMatMult_v1_a1_b1_xs1_ys1)
 Mangled name for CSR_SymmMatMult_v1_a1_b1_xs1_ys1().
#define CSR_SymmMatMult_v1_a1_b1_xs1_ysX   MANGLE_(CSR_SymmMatMult_v1_a1_b1_xs1_ysX)
 Mangled name for CSR_SymmMatMult_v1_a1_b1_xs1_ysX().
#define CSR_SymmMatMult_v1_a1_b1_xsX_ys1   MANGLE_(CSR_SymmMatMult_v1_a1_b1_xsX_ys1)
 Mangled name for CSR_SymmMatMult_v1_a1_b1_xsX_ys1().
#define CSR_SymmMatMult_v1_a1_b1_xsX_ysX   MANGLE_(CSR_SymmMatMult_v1_a1_b1_xsX_ysX)
 Mangled name for CSR_SymmMatMult_v1_a1_b1_xsX_ysX().
#define CSR_SymmMatMult_v1_aN1_b1_xs1_ys1   MANGLE_(CSR_SymmMatMult_v1_aN1_b1_xs1_ys1)
 Mangled name for CSR_SymmMatMult_v1_aN1_b1_xs1_ys1().
#define CSR_SymmMatMult_v1_aN1_b1_xs1_ysX   MANGLE_(CSR_SymmMatMult_v1_aN1_b1_xs1_ysX)
 Mangled name for CSR_SymmMatMult_v1_aN1_b1_xs1_ysX().
#define CSR_SymmMatMult_v1_aN1_b1_xsX_ys1   MANGLE_(CSR_SymmMatMult_v1_aN1_b1_xsX_ys1)
 Mangled name for CSR_SymmMatMult_v1_aN1_b1_xsX_ys1().
#define CSR_SymmMatMult_v1_aN1_b1_xsX_ysX   MANGLE_(CSR_SymmMatMult_v1_aN1_b1_xsX_ysX)
 Mangled name for CSR_SymmMatMult_v1_aN1_b1_xsX_ysX().
#define CSR_SymmMatMult_v1_aX_b1_xs1_ys1   MANGLE_(CSR_SymmMatMult_v1_aX_b1_xs1_ys1)
 Mangled name for CSR_SymmMatMult_v1_aX_b1_xs1_ys1().
#define CSR_SymmMatMult_v1_aX_b1_xs1_ysX   MANGLE_(CSR_SymmMatMult_v1_aX_b1_xs1_ysX)
 Mangled name for CSR_SymmMatMult_v1_aX_b1_xs1_ysX().
#define CSR_SymmMatMult_v1_aX_b1_xsX_ys1   MANGLE_(CSR_SymmMatMult_v1_aX_b1_xsX_ys1)
 Mangled name for CSR_SymmMatMult_v1_aX_b1_xsX_ys1().
#define CSR_SymmMatMult_v1_aX_b1_xsX_ysX   MANGLE_(CSR_SymmMatMult_v1_aX_b1_xsX_ysX)
 Mangled name for CSR_SymmMatMult_v1_aX_b1_xsX_ysX().

Functions

void CSR_SymmMatMult_v1_a1_b1_xs1_ys1 (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, const oski_value_t *restrict x, oski_value_t *restrict y)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = 1$, x is unit-stride accessible, and y is unit-stride accessible.
void CSR_SymmMatMult_v1_a1_b1_xs1_ysX (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, const oski_value_t *restrict x, oski_value_t *restrict y, oski_index_t incy)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = 1$, x is unit-stride accessible, and y is general-stride accessible.
void CSR_SymmMatMult_v1_a1_b1_xsX_ys1 (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, const oski_value_t *restrict x, oski_index_t incx, oski_value_t *restrict y)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = 1$, x is general-stride accessible, and y is unit-stride accessible.
void CSR_SymmMatMult_v1_a1_b1_xsX_ysX (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, const oski_value_t *restrict x, oski_index_t incx, oski_value_t *restrict y, oski_index_t incy)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = 1$, x is general-stride accessible, and y is general-stride accessible.
void CSR_SymmMatMult_v1_aN1_b1_xs1_ys1 (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, const oski_value_t *restrict x, oski_value_t *restrict y)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = -1$, x is unit-stride accessible, and y is unit-stride accessible.
void CSR_SymmMatMult_v1_aN1_b1_xs1_ysX (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, const oski_value_t *restrict x, oski_value_t *restrict y, oski_index_t incy)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = -1$, x is unit-stride accessible, and y is general-stride accessible.
void CSR_SymmMatMult_v1_aN1_b1_xsX_ys1 (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, const oski_value_t *restrict x, oski_index_t incx, oski_value_t *restrict y)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = -1$, x is general-stride accessible, and y is unit-stride accessible.
void CSR_SymmMatMult_v1_aN1_b1_xsX_ysX (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, const oski_value_t *restrict x, oski_index_t incx, oski_value_t *restrict y, oski_index_t incy)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = -1$, x is general-stride accessible, and y is general-stride accessible.
void CSR_SymmMatMult_v1_aX_b1_xs1_ys1 (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, oski_value_t alpha, const oski_value_t *restrict x, oski_value_t *restrict y)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = $ (a general value), x is unit-stride accessible, and y is unit-stride accessible.
void CSR_SymmMatMult_v1_aX_b1_xs1_ysX (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, oski_value_t alpha, const oski_value_t *restrict x, oski_value_t *restrict y, oski_index_t incy)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = $ (a general value), x is unit-stride accessible, and y is general-stride accessible.
void CSR_SymmMatMult_v1_aX_b1_xsX_ys1 (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, oski_value_t alpha, const oski_value_t *restrict x, oski_index_t incx, oski_value_t *restrict y)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = $ (a general value), x is general-stride accessible, and y is unit-stride accessible.
void CSR_SymmMatMult_v1_aX_b1_xsX_ysX (oski_index_t m, oski_index_t n, const oski_index_t *restrict ptr, const oski_index_t *restrict ind, const oski_value_t *restrict val, oski_index_t index_base, oski_value_t alpha, const oski_value_t *restrict x, oski_index_t incx, oski_value_t *restrict y, oski_index_t incy)
 Computes $y \leftarrow y + \alpha\cdot op(A)\cdot x$, where $A$ is symmetric (i.e., $A = A^T$), $op(A) = A$, $\alpha = $ (a general value), x is general-stride accessible, and y is general-stride accessible.


Generated on Wed Sep 19 16:41:22 2007 for BeBOP Optimized Sparse Kernel Interface Library by  doxygen 1.4.6